本书是为理工科大学各专业普遍开设的“数值分析”课程编写的教材。其内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解法。每章附有习题并在书末给出了部分答案,每章还附有复习与思考题和计算实习题。全书阐述严谨,脉络分明,深入浅出,便于教学。 本书也可作为理工科大学各专业研究生学位课程的教材,并可供从事科学计算的科技工作者参考。
目 录
第1章 数值分析与科学计算引论 1.1 数值分析的对象、作用与特点 1.1.1 数学科学与数值分析 1.1.2 计算数学与科学计算 1.1.3 计算方法与计算机 1.1.4 数值问题与算法 1.2 数值计算的误差 1.2.1 误差来源与分类 1.2.2 误差与有效数字 1.2.3 数值运算的误差估计 1.3 误差定性分析与避免误差危害 1.3.1 算法的数值稳定性 1.3.2 病态问题与条件数 1.3.3 避免误差危害 1.4 数值计算中算法设计的技术 1.4.1 多项式求值的秦九韶算法 1.4.2 迭代法与开方求值 1.4.3 以直代曲与化整为“零” 1.4.4 加权平均的松弛技术 1.5 数学软件 评注 复习与思考题 习题 第2章 插值法 2.1 引言 2.1.1 插值问题的提出 2.1.2 多项式插值 2.2 拉格朗日插值 2.2.1 线性插值与抛物线插值 2.2.2 拉格朗日插值多项式 2.2.3 插值余项与误差估计 2.3 均差与牛顿插值多项式 2.3.1 插值多项式的逐次生成 2.3.2 均差及其性质 2.3.3 牛顿插值多项式 2.3.4 差分形式的牛顿插值公式 2.4 埃尔米特插值 2.4.1 重节点均差与泰勒插值 2.4.2 两个典型的埃尔米特插值 2.5 分段低次插值 2.5.1 高次插值的病态性质 2.5.2 分段线性插值 2.5.3 分段三次埃尔米特插值 2.6 三次样条插值 2.6.1 三次样条函数 2.6.2 样条插值函数的建立 2.6.3 误差界与收敛性 评注 复习与思考题 习题 计算实习题 第3章 函数逼近与快速傅里叶变换 3.1 函数逼近的基本概念 3.1.1 函数逼近与函数空间 3.1.2 范数与赋范线性空间 3.1.3 内积与内积空间 3.1.4 最佳逼近 3.2 正交多项式 3.2.1 正交函数族与正交多项式 3.2.2 勒让德多项式 3.2.3 切比雪夫多项式 3.2.4 切比雪夫多项式零点插值 3.2.5 其他常用的正交多项式 …… 第4章 数值积分与数值微分 第5章 解线性方程组的直接方法 第6章 解线性方程组的迭代法 第7章 非线性方程与方程组的数值解法 第8章 矩阵特征值计算 第9章 常微分方程初值问题数值解法 部分习题答案 参考文献
【提醒】购买纸书后,扫码即可免费领取购书大礼包!
如果你已购买本书,请扫一扫封面右上角的二维码,如下图:
如果你未购买纸书,请先购买:
立即购买
Copyright 2007–2021 www.100xuexi.com All rights reserved 圣才学习网 版权所有
全国热线:400-900-8858(09:30-22:00),18001260133(09:30-22:00)
增值电信业务经营许可证 出版物经营许可证 网络文化经营许可证 广播电视节目制作经营许可证
京ICP备09054306号-30 鄂公网安备42018502007632号 营业执照
国家高新技术企业 中关村高新技术企业