数学史概论(第3版)

¥29.4¥29.40
已下架(本产品缺货或未上线)

商品介绍

内容推荐

    《数学史概论(第3版)》以重大数学思想的发展为主线,阐述了从远古 到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分 析;同时本着“厚今薄古”的原则,充分论述了文艺复兴以来近现代数学 的演进与变革,尤其是20世纪数学的概观,内容新颖,第三版更增添了“ 未来的挑战”等反映数学最新进展的章节。《数学史概论(第3版)》中西合 炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。
    第三版在内容上进行了必要的修订与更新,全书重点突出,脉络分明 ,并注意引用生动的史实和丰富的图片,因而适合于综合大学、师范院校 各专业的学生作为数学史课程的教材以及研究生选修数学史的参考用书, 同时也可供广大数学工作者和一般科学爱好者阅读参考。本书由李文林著。

 

目录

0  数学史——人类文明史的重要篇章

  0.1  数学史的意义

  0.2  什么是数学——历史的理解

  0.3  关于数学史的分期

1  数学的起源与早期发展

  1.1  数与形概念的产生

  1.2  河谷文明与早期数学

    1.2.1  埃及数学

    1.2.2  美索不达米亚数学

2  古代希腊数学

  2.1  论证数学的发端

    2.1.1  泰勒斯与毕达哥拉斯

    2.1.2  雅典时期的希腊数学

  2.2  黄金时代——亚历山大学派

    2.2.1  欧几里得与《原本》

    2.2.2  阿基米德的数学成就

    2.2.3  阿波罗尼奥斯与圆锥曲线论

  2.3  亚历山大后期和希腊数学的衰落

3  中世纪的中国数学

  3.1  《周髀算经》与《九章算术》

    3.1.1  古代背景

    3.1.2  《周髀算经》

    3.1.3  《九章算术》

  3.2  从刘徽到祖冲之

    3.2.1  刘徽的数学成就

    3.2.2  祖冲之与祖咂

    3.2.3  《算经十书》

  3.3  宋元数学

    3.3.1  从“贾宪三角”到“正负开方”术

    3.3.2  中国剩余定理

    3.3.3  内插法与垛积术

    3.3.4  “天元术”与“四元术”

4  印度与阿拉伯的数学

  4.1  印度数学

    4.1.1  古代《绳法经》

    4.1.2  “巴克沙利手稿”与零号

    4.1.3  “悉檀多”时期的印度数学

  4.2  阿拉伯数学

    4.2.1  阿拉伯的代数

    4.2.2  阿拉伯的三角学与几何学

5  近代数学的兴起

  5.1  中世纪的欧洲

  5.2  向近代数学的过渡

    5.2.1  代数学

    5.2.2  三角学

    5.2.3  从透视学到射影几何

    5.2.4  计算技术与对数

  5.3  解析几何的诞生

6  微积分的创立

  6.1  半个世纪的酝酿

  6.2  牛顿的“流数术”

    6.2.1  流数术的初建

    6.2.2  流数术的发展

    6.2.3  (原理》与微积分

  6.3  莱布尼茨的微积分

    6.3.1  特征三角形

    6.3.2  分析微积分的建立

    6.3.3  莱布尼茨微积分的发表

    6.3.4  其他数学贡献

  6.4  牛顿与菜布尼茨

7  分析时代

  7.1  微积分的发展

  7.2  微积分的应用与新分支的形成

  7.3  18世纪的几何与代数

8  代数学的新生

  8.1  代数方程的可解性与群的发现

  8.2  从四元数到超复数

  8.3  线性代数

    8.3.1  行列式理论

    8.3.2  矩阵代数

  8.4  布尔代数

  8.5  代数数论

9  几何学的变革

  9.1  欧几里得平行公设

  9.2  非欧几何的诞生

  9.3  非欧几何的发展与确认

  9.4  射影几何的繁荣

  9.5  几何学的统一

10  分析的严格化

  10.1  柯西与分析基础

  10.2  分析的算术化

    10.2.1  魏尔斯特拉斯

    10.2.2  实数理论

    10.2.3  集合论的诞生

  10.3  分析的扩展

    10.3.1  复分析的建立

    10.3.2  解析数论的形成

    10.3.3  数学物理与微分方程

11  20世纪数学概观(Ⅰ)纯粹数学的主要趋势

  11.1  新世纪的序幕

  11.2  更高的抽象

    11.2.1  勒贝格积分与实变函数论

    11.2.2  泛函分析

    11.2.3  抽象代数

    11.2.4  拓扑学

    11.2.5  公理化概率论

  11.3  数学的统一化

  11.4  对基础的深入探讨

    11.4.1  集合论悖论

    11.4.2  三大学派

    11.4.3  数理逻辑的发展

12  20世纪数学概观(Ⅱ)空前发展的应用数学

  12.1  应用数学的新时代

  12.2  数学向其他科学的渗透

    12.2.1  数学物理

    12.2.2  生物数学

    12.2.3  数理经济学

  12.3  独立的应用学科

    12.3.1  数理统计

    12.3.2  运筹学

    12.3.3  控制论

  12.4  计算机与现代数学

    12.4.1  电子计算机的诞生

    12.4.2  计算机影响下的数学

13  20世纪数学概观(Ⅲ)现代数学成果十例

  13.1  哥德尔不完全性定理(1931)

  13.2  高斯-博内公式的推广(1941—1944)

  13.3  米尔诺怪球(1956)

  13.4  阿蒂亚-辛格指标定理(1963)

  13.5  孤立子与非线性偏微分方程(1965)

  13.6  四色问题(1976)

  13.7  分形与混沌(1977)

  13.8  有限单群分类(1980)

  13.9  费马大定理的证明(1994)

  13.10  若干著名未决猜想的进展

  13.11  未来的挑战

    13.11.1  庞加莱猜想

    13.11.2  黎曼猜想

    13.11.3  伯奇-斯温纳顿·代尔猜想

    13.11.4  霍奇猜想

    13.11.5  纳维-斯托克斯方程解的存在性与光滑性

    13.11.6  量子杨-米尔斯理论

    13.11.7  P对NP问题

14  数学与社会

  14.1  数学与社会进步

  14.2  数学发展中心的迁移

  14.3  数学的社会化

    14.3.1  数学教育的社会化

    14.3.2  数学专门期刊的创办

    14.3.3  数学社团的成立

    14.3.4  数學奖励

15  中国现代数学的开拓

  15.1  西方数学在中国的早期传播

  15.2  高等数学教育的兴办

  15.3  现代数学研究的兴起

参考文献

人名索引

术语索引

×

【提醒】购买纸书后,扫码即可免费领取购书大礼包!

如果你已购买本书,请扫一扫封面右上角的二维码,如下图:

如果你未购买纸书,请先购买:

立即购买

长按图片下载到相册
分享到微信、朋友圈、微博、QQ等
朋友注册并购买后,您可赚
取消