高等代数(第五版)

¥24.8¥24.80
已下架(本产品缺货或未上线)

商品介绍

  《高等代数》(作者张禾瑞、郝鈵新)第五版是在第四版的基础上,作了不太大的修订。第一章介绍代数中最基本的概念;第二章至第九章是多项式理论初步和线性代数基础这两部分,这是高等代数的中心内容;第十章对群、环、域作了简单的介绍;作为附录,从向量空间的分解的角度讲述矩阵的若尔当标准形式。
  《高等代数》第五版可作为高等学校数学院系本科生教材,也可供理工科教师和学生参考。

 

目 录
第一章 基本概念
 1.1 集合
 1.2 映射
 1.3 数学归纳法
 1.4 整数的一些整除性质
 1.5 数环和数域
第二章 多项式
 2.1 一元多项式的定义和运算
 2.2 多项式的整除性
 2.3 多项式的最大公因式
 2.4 多项式的分解
 2.5 重因式
 2.6 多项式函数多项式的根
 2.7 复数和实数域上多项式
 2.8 有理数域上多项式
 2.9 多元多项式
 2.10 对称多项式
第三章 行列式
 3.1 线性方程组和行列式
 3.2 排列
 3.3 n阶行列式
 3.4 子式和代数余子式行列式的依行依列展开
 3.5 克拉默规则
第四章 线性方程组
 4.1 消元法
 4.2 矩阵的秩线性方程组可解的判别法
 4.3 线性方程组的公式解
 4.4 结式和判别式
第五章 矩阵
 5.1 矩阵的运算
 5.2 可逆矩阵矩阵乘积的行列式
 5.3 矩阵的分块
第六章 向量空间
 6.1 定义和例子
 6.2 子空间
 6.3 向量的线性相关性
 6.4 基和维数
 6.5 坐标
 6.6 向量空间的同构
 6.7 矩阵的秩齐次线性方程组的解空间
第七章 线性变换
 7.1 线性映射
 7.2 线性变换的运算
 7.3 线性变换和矩阵
 7.4 不变子空间
 7.5 本征值和本征向量
 7.6 可以对角化的矩阵
第八章 欧氏空间和酉空间
 8.1 向量的内积
 8.2 正交基
 8.3 正交变换
 8.4 对称变换和对称矩阵
 8.5 酉空间
 8.6 酉变换和对称变换
第九章 二次型
 9.1 二次型和对称矩阵
 9.2 复数域和实数域上的二次型
 9.3 正定二次型
 9.4 主轴问题
 9.5 双线性函数
第十章 群,环和域简介
 10.1 群
 10.2 剩余类加群
 10.3 环和域
附录 向量空间的分解和矩阵的若尔当标准形式
 §1 向量空间的准素分解凯莱-哈密顿定理
 §2 线性变换的若尔当分解
 §3 幂零矩阵的标准形式
 §4 若尔当标准形式
索 引

×

【提醒】购买纸书后,扫码即可免费领取购书大礼包!

如果你已购买本书,请扫一扫封面右上角的二维码,如下图:

如果你未购买纸书,请先购买:

立即购买

长按图片下载到相册
分享到微信、朋友圈、微博、QQ等
朋友注册并购买后,您可赚
取消